
1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

1

Dynamic Group-Oriented Provable Data Possession
in the Cloud

Kun He, Jing Chen, Quan Yuan, Shouling Ji, Debiao He, and Ruiying Du

Abstract—As an important security property of cloud storage,
data integrity has not been sufficiently studied under the multi-
writer model, where a group of users work on shared files
collaboratively and any group member can update the data by
modification, insertion, and deletion operations. Existing works
under such multi-writer model would bring large storage cost
to the third-party verifiers. Furthermore, to the best of our
knowledge, none of the existing works for shared files supports
fully dynamic operations, which implies that users cannot freely
perform the update operations.

In this paper, we propose the first public auditing scheme for
shared data that supports fully dynamic operations and achieves
constant storage cost for the verifiers. Our scheme, named
PRAYS, is boosted by a new paradigm for remote data integrity
checking. To implement the new paradigm, we proposed a
specially designed authenticated structure, called blockless Merkle
tree, and a novel cryptographic primitive, called permission-based
signature. Extensive evaluation demonstrates that PRAYS is as
efficient as the existing less-functional solutions. We believe that
PRAYS is an important step towards designing practical multi-
writer cloud storage systems.

Index Terms—provable data possession, blockless Merkle tree,
permission-based signature

I. INTRODUCTION

Cloud storage, which provides ubiquitous access to a pool
of configurable remote storage resources on-demand, is an
attractive paradigm to both individuals and enterprises. Along
with this convenience, data integrity becomes a major concern
about storage outsourcing, especially considering platform
failures and human errors [1]–[3].

To guarantee data integrity in cloud storage services, many
relevant cryptographic primitives have been proposed [4]–
[8]. Generally, through assigning a cryptographic tag to each
data block of a file and validating it, those primitives allow
a verifier (i.e., the data owner or a special third party) to
examine remote data integrity without downloading the whole
file, and therefore reduce the communication cost. However,

K. He and D. He are with Key Laboratory of Aerospace Information
Security and Trusted Computing, Ministry of Education, School of Cyber
Science and Engineering, Wuhan University, Wuhan, China.

J. Chen is with Key Laboratory of Aerospace Information Security and
Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, Wuhan, with Shenzhen Institute of Wuhan
University, Shenzhen, and with Science and Technology on Communication
Security Laboratory, Chengdu, China.

Q. Yuan is with the Computer School, University of Texas-Permian Basin,
TX, USA.

S. Ji is with the Computer School, Zhejiang University, Hangzhou, China.
R. Du is with Key Laboratory of Aerospace Information Security and

Trusted Computing, Ministry of Education, School of Cyber Science and
Engineering, Wuhan University, and with Collaborative Innovation Center of
Geospatial Technology, Wuhan, China.

those primitives are limited to the single-writer model, where
only the data owner can update the data in the cloud.

On the other hand, as online cooperation develops in-
tensively, the multi-writer model, where shared files could
be updated by a group of users for collaboration, is more
preferred in nowadays cloud platforms (e.g., Dropbox and
SugarSync). Protecting data integrity in the multi-writer cloud
storage, i.e., for dynamic shared data, then turns to be an
urgent challenge.

Most existing solutions under the multi-writer model simply
apply the paradigm for the single-writer model, under which
each data block is signed with a user’s private key. When a
user is revoked, all the data blocks signed by that user have
to be re-signed by an unrevoked user or the cloud server [9]–
[11]. Since the number of data blocks is huge in the cloud
(e.g., 1 TB data can have 2.68 × 108 data blocks with each
block of size 4 kB), these kinds of methods are inefficient in
practice.

Some researchers regarded signers’ identities as private
under the multi-writer model, since they could reveal some
significant information about the signed (even encrypted) data.
Taking the e-Health records outsouring as an example, once
the cloud finds that a patient’s (maybe encrypted) record is
signed by an oncologist, the cloud could infer some private in-
formation about that patient, which may violate patient rights.
Many privacy-preserving solutions have been proposed to
solve this issue [12]–[14]. However, cooperative users in those
solutions cannot determine by themselves who updated the files
stored in the cloud, which is an important function in real-
world cloud storage systems (e.g., Dropbox and SugarSync),
called revision history. This means that in the aforementioned
example, a doctor is unable to learn who made the previous
diagnosis by himself/herself. In summary, a privacy-preserving
integrity checking scheme under the multi-writer model should
achieve anonymity and offline traceability, simultaneously.

In addition, there are two other shortcomings in existing
multi-writer solutions. The size of verification materials in
those solutions, such as public keys, depends on the number
of users or data blocks, which may result in unaffordable
workload, especially when the data is huge [9]–[14]. That
means the verification process only applies to dedicated servers
and not to users’ resource-constrained devices, such as smart-
phones and laptops. On the other hand, those solutions do not
support fully dynamic operations, which includes unlimited
times of modifications, insertions, and deletions of data blocks.
Specifically, some schemes only supports modifications and
deletions, but not insertions [10], [14].

Based on the above discussions, there still lacks an efficient

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

2

and privacy-preserving integrity checking scheme under the
multi-writer model, in which a group of users are enabled
to outsource and work on (i.e., read and write) shared files
collaboratively. In practice, a preferred data integrity checking
design is expected to have the following features (in addition
to integrity):

• Fully dynamic operations. This property implies that
group members can freely perform modification, inser-
tion, and deletion operations.

• Constant auditing metadata. This property implies that
the size of verification materials maintained by verifiers
for integrity checking should be independent of the
number of users and the data size.

• Secure user revocation. This property implies that group
members can be efficiently revoked. Further, the system
should resist the collusion between revoked users and
the cloud, and between revoked users and third party
verifiers.

• Anonymity. This property implies that a writer’s identity
should not be revealed from his/her signature to the cloud
or third party verifiers.

• Traceability. This property implies that users from the
same group can identify who updated the shared data
from the signature, i.e., obtaining the revision history,
without the help from any online entity.

In this paper, we follow the line of provable data posses-
sion [4], [15], and propose a dynamic group-oriented provable
data possession scheme, called PRAYS, which holds all the
above-mentioned features. Compared with existing solutions
(i.e., generating the tags and then building the structure),
PRAYS is boosted by a new paradigm: building the structure
and then generating the tag. Our main contributions are
summarized as follows.

1) We present a customized authenticated structure, named
blockless Merkle tree. Compared with the traditional
Merkle tree, the proposed structure supports blockless
verification (i.e., to check remote data integrity without
downloading the challenged data blocks) through an
elaborate process for each data block.

2) We propose a novel cryptographic primitive, named
permission-based signature. Permission-based signature
is the first cryptographic primitive that achieves both
anonymity and offline traceability. Further, this primitive
could also be used independently in other privacy-
preserving applications.

3) We design PRAYS based on the blockless Merkle tree
and the permission-based signature. To the best of our
knowledge, PRAYS is the first provable data possession
scheme under the multi-writer model that supports fully
dynamic operations as well as constant auditing meta-
data.

4) We conduct comprehensive security analysis and ex-
tensive evaluations for the proposed scheme. The re-
sults demonstrate that, compared with existing solutions,
PRAYS can perform richer functions (e.g., fully dynamic
operations) while maintaining reasonable computation
and communication cost.

TPA

CSP

Manager
Users

A
uditing

flow
Sh
ar
ed
da
ta
flo
w

Auditing reportUser management

Group

Fig. 1. The system model of multi-writer cloud storage.

The rest of this paper is organized as follows. In Sec-
tion II, we describe the models and definitions. We present
our solution, called PRAYS, in Section III. We conduct the
security analysis and performance evaluation in Section IV
and Section V, respectively. We review the related work in
Section VI, and we conclude this paper and point out our
future work in Section VII.

II. MODELS AND DEFINITIONS

A. System Model

Our setting of interest focuses on the deployment of cloud
storage systems under the multi-writer model, which consists
of a Cloud Service Provider (CSP), a Third-Party Auditor
(TPA), a group of users, and a manager, as shown in Fig. 1.

CSP offers storage service and TPA provides data auditing
service. The manager creates a group of users and manages
all the users in the group, i.e., user registration and user revo-
cation. Note that the manager only acts for user management.
Thus, he/she does not have to be online all the time. Users
within a group have equal status, which means that every user
can upload a new file to the cloud, and then other users can
read and update that file. This model has been adopted in many
other solutions [11], [12].

State Information Synchronization. Most existing in-
tegrity checking schemes for dynamic data (under both the
single-writer and multi-writer models) are stateful [10], [16];
otherwise, CSP can use outdated data to pass the verification.
Under the multi-writer model, the situation is more complex.
That is, the latest state information has to be synchronized
among the TPA and all the users. We highlight that state
information synchronization is important while orthogonal to
our work. Existing schemes (e.g., [10]) solve this problem by
simply sending the state information to TPA every time when
the data is updated. Then, users can obtain the latest state
information from TPA. However, TPA may be offline when
the data is updated. Therefore, in this paper, we employ an
alternative solution that depends on a trusted public platform
(which is not included in Fig. 1), such as bulletin boards or
blockchains [17]–[19], for publishing and obtaining the latest
state information.

Single-writer model vs. multi-writer model. In the single-
writer model, although the data owner (i.e., the one who

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

3

uploaded the data) can share his/her data with other users in the
cloud, these users only have read permission. That is, only the
data owner can update his/her data in the cloud. In the multi-
writer model, a group of users are enabled to outsource and
work on shared data collaboratively. Specifically, a shared data
block stored in the cloud could be constantly read, modified,
inserted, and deleted by any group member.

B. Threat Model

We assume that the manager and (unrevoked) users are
honest as in [10], [14]. We consider a threat model under
which CSP and TPA are honest-but-curious [20], [21].
• CSP may delete a part of the stored data for saving

storage cost and try to cheat users that all the data is
stored faithfully. CSP may be curious about the identity
of the uploader and updater [22], [23], which implies that
CSP tries to extract identities from the stored data.

• TPA may also be curious about the identities of users and
may try to extract identities in the checking process.

• Both CSP or TPA may collude with revoked users.

C. Definitions

We here present the syntax of dynamic group-oriented prov-
able data possession. The security definitions are discussed in
Section IV.

Definition 1. A dynamic group-oriented provable data pos-
session scheme consists of the following seven phases.
• Initialization Phase. This phase is launched by the man-

ager to initialize the system, which only appears once
during the entire life cycle of the system. With the input
of a security parameter λ, the manager obtains a public-
private key pair (pk, sk).

• Registration Phase. This phase is launched by a user to
obtain a user key, which only occurs when a user registers
to the system. With the input of an identity id, the user
receives a user key ukid from the manager.

• Revocation Phase. This phase is launched by the manager
to disable a user key, which occurs when a user is
corrupted or leaves the system. With the input of an
identity id and the public-private key pair (pk, sk), the
manager updates the public-private key pair and all the
unrevoked user keys.

• Uploading Phase. This phase is launched by a user to
upload a new file to the cloud. With the input of a file
{di}Di=1 that consists of D data blocks and a user key
ukid, the user obtains the authenticated structure τ and
state information st of the file.

• Reading Phase. This phase is launched by a user to obtain
a data block. With the input of a block index i, the user
key ukid, and the state information st, the user obtains
the data block di and the signer identity.

• Writing Phase. This phase is launched by a user to update
an existing file. With the input of an update (i, di, op)
which consists of a block index i, a data block di, and
an operation op, and the user key ukid, the user updates
the file, authenticated structure, and state information.

Authenticated

Structure

Generation

Tag Generation

Data

Key

State

(a) Traditional approaches

Tag Generation

 (via PBS)

Authenticated

Structure

Generation

 (via BMT)

Data

Key

State

(b) Our approach

Fig. 2. Overview of the workflows.

• Auditing Phase. This phase is launched by TPA to decide
whether data is faithfully stored on the cloud. With the
input of the public key pk and the state information st,
TPA outputs a decision with a value 0 or 1.

The correctness of dynamic group-oriented provable data
possession is straightforward. On one hand, TPA always
outputs an acceptance in the auditing phase if CSP is honest.
On the other hand, a user always outputs the correct signer
identity in the reading phase if the authenticated structure and
state information are generated by some honest user.

III. OUR CONSTRUCTION

In this section, we present a PRivacy-preserving Auditing
scheme for dYnamic Shared data, named PRAYS. First, we
give an overview of the design and the challenges in it. Then,
we propose a customized authenticated structure and a novel
cryptographic primitive, respectively. Finally, we describe the
details of PRAYS.

A. Overview

Unlike most existing solutions under the single-writer or
multi-writer models (cf. Fig. 2(a)), data blocks in our scheme
are not signed with a user’s private key. Instead, we design a
new paradigm for remote data integrity checking as shown
in Fig. 2(b). First, we design a customized authenticated
structure, called Blockless Merkle Tree (BMT), and build this
structure directly from the data blocks without involving any
private keys. In our design, a TPA that holds the “correct”
root of the blockless Merkle tree can verify whether the
challenged data blocks have been tampered or are out of date.
Then, to ensure that the root is generated by a legal user
(i.e., to achieve secure user revocation) and to provide both
anonymity and traceability, the root of the tree is signed with
a user’s private key via a novel cryptographic primitive, called
Permission-Based Signature (PBS). The main notations used
in our construction are summarized in Table I.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

4

TABLE I
MAIN NOTATIONS USED IN PRAYS

Notation Description
D The number of data blocks
S The number of segments in a data block
B The number of challenged data blocks

di, di,j The ith data block and its jth segment
νι, ν1 The ιth node and the root of BMT
ιi The index in BMT of the ith leaf node

(pk, sk) The public-private key pair
ukid, certid The user key and the corresponding certificate of

identity id

B. Design Challenge

In order to achieve blockless verification, existing solutions
(e.g. [24], [25]) employ homomorphic authenticators [6], [26].
Then, constructing an authenticated structure, such as Merkle
tree, from homomorphic tags yields a solution with both
blockless verification and fully dynamic operations (cf. the
paradigm in Fig. 2(a)). However, this approach is not suitable
for the multi-writer model since every block signed by a
revoked user should be re-signed in the revocation process,
as indicated in [12] and [10]. Therefore, the computation cost
is extremely high in the current paradigm if the number of data
blocks is huge. The first challenge in our design is to construct
an authenticated structure that supports blockless verification
and fully dynamic operations without any private keys.

The second challenge is to achieve anonymity and offline
traceability simultaneously as explained in Section I. We note
that group signatures can solve the anonymity issue [27], [28].
However, due to the inherent property of group signature,
it cannot solve the traceability problem, unless users keep
contacting with the manager when they read data from the
cloud, which requires extra communication overhead. Further,
this requires the manager to be online all the time, which
is a security bottleneck of the system. One may argue that
this issue can be solved by giving each user the opening key
of group signature. Unfortunately, this trivial solution (and
other solutions that depend on a shared secret key) has two
unacceptable shortcomings. First, it is impossible to trace the
traitors when the opening key is leaked since all users possess
the same one. Second, secure channels need to be established
between the manager and unrevoked users for redistributing
the opening key in the revocation process.

C. Blockless Merkle Tree

To tackle the first challenge in Section III-B and realize
remote data integrity checking, we propose Blockless Merkle
Tree (BMT) as a new building block. Compared with existing
usages of Merkle tree which combine with homomorphic
authenticators, BMT is designed for blockless verification
(where TPA does not have to download all the challenged
blocks) without any homomorphic authenticator, which makes
BMT valuable for remote data integrity checking (even un-
der the single-writer model). Since the tree building process
requires no private key, BMT is especially suitable for the
multi-writer model, i.e., dynamic group-oriented provable data
possessions. In addition, the tree itself binds each data block

and its position1, therefore, the proof can also provide the
position correctness. In summary, remote data integrity can be
guaranteed with blockless verification through the proposed
blockless Merkle tree if the verifier possesses the correct root.

1) Syntax: We here formally introduce the syntax of block-
less Merkle tree. Note that the major difference between prior
usages and our proposal is that the Merkle tree in previous
approaches is built from the tags rather than the file. As a
result, the proving algorithm and proof verification algorithm
in BMT are very different from the traditional ones.

Definition 2. A blockless Merkle tree scheme is a 4-tuple
(Build,Prove,Verify,Update).
• The tree building algorithm Build() takes as input a file,

and outputs an authenticated structure and a metadata
of the authenticated structure.

• The proving algorithm Prove() takes as input a challenge,
a file, and an authenticated structure, and outputs a
proof. The proof is blockless if it does not contain every
challenged file blocks.

• The proof verification algorithm Verify() takes as input
a challenge, a proof, and a metadata, and outputs a
decision about whether the proof is valid.

• The tree update algorithm Update() takes as input an
update, a file, an authenticated structure, and a metadata,
and outputs the updated file, authenticated structure, and
metadata.

The correctness of blockless Merkle tree is straightforward.
Intuitively, it means that the honestly generated proof should
always be valid.

2) Security Definition: The expected security property of
blockless Merkle tree is integrity, which is defined by the
following game between a challenger and an adversary.

1) The adversary chooses a file according to some distri-
bution and sends it to the challenger.

2) The challenger runs BMT.Build and sends the authenti-
cated structure to the adversary.

3) The adversary may ask the challenger to run
BMT.Update with adversary-specified updates for poly-
nomial times.

4) The challenger sends a challenge to the adversary, and
receives a proof from the adversary. We say that the
adversary wins if the challenger accepts the proof, i.e.,
the proof verification algorithm BMT.Verify return 1.

Definition 3 (Integrity). A blockless Merkle tree scheme guar-
antees the integrity if for any probabilistic polynomial time
adversary that wins the game, the challenger can reconstruct
the challenged blocks in polynomial time.

3) Construction: We now detail a concrete construction
of blockless Merkle tree. Let G be a multiplicative cyclic
group of prime order p, and H : {0, 1}∗ → {0, 1}∗ be a
cryptographic hash function. We assume that the file consists
of D data blocks {di}Di=1 and a data block is the basic unit
(e.g., 4kB and 16kB) when CSP stores and processes the file.
However, a data block is too large to be handled in Zp. Thus,

1This trick has been used in some literatures [25], [29], [30].

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

5

u1 u2 u3 u4

1

2 3

4 5 6 7

d1,1 d1,2 d1,3 d2,1 d2,2 d2,3 d3,1 d3,2 d3,3 d4,1 d4,2 d4,3

Fig. 3. An illustration of tree building.

we divide each data block di into S segments {di,j}Sj=1 where
di,j ∈ Zp. The four Probabilistic Polynomial Time (PPT)
algorithms are described below.

The Tree Building Algorithm BMT.Build(). With the
input of D data blocks {di}Di=1, this algorithm outputs an
authenticated structure and some metadata. The detailed pro-
cedure is as follows.

1) Choose S random generators g1, . . . , gS ∈ G.
2) For each data block di, compute ui :=

∏S
j=1 g

di,j
j .

3) Build a complete binary tree τ with D leaf nodes as
shown in Fig. 3, in which each node stores a triple νι =
(ι, lι, sι), where ι is the unique index of the node in the
tree, lι is the number of leaf nodes that can be reached
from the ιth node, and sι is a hash value. The index of
root is 1, and the index increases from top to bottom
and from left to right. We explain how to assign lι and
sι in the following steps.

4) For the ith leaf node whose index in the tree is ιi, set
lιi := 1 and compute sιi := H(ui).

5) For each non-leaf node whose index in the tree is ι,
compute lι := l2ι+l2ι+1 and sι := H(ν2ι‖ν2ι+1), where
ν2ι = (2ι, l2ι, s2ι) and ν2ι+1 = (2ι+1, l2ι+1, s2ι+1) are
νι’s left child and right child, respectively.

6) Return the authenticated structure (τ, {gj}Sj=1) and the
metadata (ν1, {gj}Sj=1).

Compared with the Merkle tree, there are two major dif-
ferences in the construction of BMT. First, instead of di, we
use ui to compute the hash value stored in the leaf node. That
is why our proposal does not need authenticators and tags.
This modification enables blockless verfication and reduces the
communication cost in the integrity checking process. Second,
extra information (i.e., ι and lι) is embedded in the hash values
which fixes the vulnerability of the traditional Merkle tree.

Fig. 3 shows an illustration of the tree building algorithm
with D = 4 and S = 3. In this illustration, u1 :=
g
d1,1
1 g

d1,2
2 g

d1,3
3 and ν4 := (4, 1, H(u1)).

The Proving Algorithm BMT.Prove(). With the input of
the challenge {(ib, nb)}Bb=1 where ib indicates the challenged
index, nb ∈ Z∗p is a coefficient, and B is the number
of challenged blocks, the data blocks {di}Di=1, the tree τ ,
and {gj}Sj=1, this algorithm generates a proof. The detailed
procedure is as follows.

1) Compute uib :=
∏S
j=1 g

dib,j
j and obtain {uib}Bb=1.

2) Compute µj :=
∑B
b=1 nbdib,j and obtain {µj}Sj=1.

3) Compute the path from the root to the challenged leaf
nodes, and the siblings θ of the path.

4) Return the proof $ = ({µj}Sj=1, θ, {(ιib , uib)}Bb=1).
The first step of the proving algorithm is not necessary

in practice, since uib can be computed in advance. One can
also let the tree building algorithm output {ui}Di=1 and store
(τ, {ui}Di=1) as the authenticated structure.

The Proof Verification Algorithm BMT.Verify(). With the
input of the challenge {(ib, nb)}Bb=1, the proof $, the root ν1
of the tree τ , and {gj}Sj=1, this algorithm checks whether the
proof is valid. The detailed procedure is as follows.

1) Parse $ as {µj}Sj=1, θ, and {(ιib , uib)}Bb=1.
2) Return 0 if

∏S
j=1 g

µj
j =

∏B
b=1 u

nb
ib

does not hold.
3) For each uib , compute sιib := H(uib).
4) Reconstruct the root from θ and {νιib }

B
b=1 where νιib =

(ιib , 1, sιib). This reconstruction process is similar to the
tree building algorithm. Return 0 if the reconstructed
root is not equal to ν1.

5) Return 1 which denotes the proof is valid. That means,
every dib corresponds to the ibth leaf node and is not
tampered (1 ≤ b ≤ B).

The Tree Update Algorithm BMT.Update(). With the
input of the tree τ , {gj}Sj=1, and an update which consists
of a block index i, an operation op, and a data block
di = {di,j}Sj=1, this algorithm updates the data blocks and
authenticated structure according to the operation2. If the
operation is modification, the original ith data block will be
replaced by di. If the operation is insertion, di will be inserted
in front of the ith data block. If the operation is deletion, the
ith data block will be removed. The detailed procedure is as
follows.

1) Compute ui :=
∏S
j=1 g

di,j
j and sιi := H(u) if the

operation is modification or insertion. Skip this step if
the operation is deletion.

2) Migrate the original ith leaf node to the (2ιi + 1)th
node if the operation is insertion, and to the bιi/2cth
node if the operation is deletion. Skip this step if the
operation is modification. This is the same with the
dynamic operations in other binary trees.

3) Update the affected path via sιi and the siblings in τ .
4) Return di and the updated path, which can be used for

updating the data blocks, authenticated structure, and
metadata.

The process for updating multiple data blocks at once is
similar. After multiple rounds of updates, the tree needs to
be rebalanced. The rebalance process of BMT is similar to
other balanced trees, which includes rotation and value re-
computation. Note that only the values stored in the affected
nodes need to be recomputed, and the most time-consuming
computation in the rebalancing process is hashing. Therefore,
the rebalance process in BMT is as efficient as in the other
balanced trees.

D. Permission-based Signature

In order to employ BMT in our scheme, the root ν1 should
be generated by unrevoked users. That means, ν1 needs to

2To simplify the description, the syntax of the tree update algorithm here
is slightly different from the one introduced in previous section.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

6

be signed with a legal user’s private key. To tackle the
second challenge in Section III-B, we propose a novel crypto-
graphic primitive, called Permission-Based Signature (PBS), to
preserve anonymity and (offline) traceability, simultaneously.
The setting of permission-based signature is similar to group
signature, under which there is a manager and a group of
users. Users can sign messages on behalf of the group. Unlike
group signature where only the manager can reveal the signer’s
identity, permission-based signature allows every user in the
group to obtain the signer’s identity using a unique revealing
key. Thus, in our system, users in the same group can obtain
the signer’s identity, i.e., revision history, without the help
of an online manager. Furthermore, the proposed scheme
supports revocation and the revoked users cannot collude with
CSP or TPA.

1) Syntax: Before describing the construction, we first
formally introduce the syntax of permission-based signature.
Compared with group signature, a user in permission-based
signature possesses two keys, one is called signing key, and
the other is called revealing key. Either of the two keys can
be empty, which means a user may only have the signing
capability or the revealing capability. Obviously, permission-
based signature implies group signature. To construct a group
signature scheme from permission-based signature, the man-
ager in PBS simply does not generate any revealing keys
for users. Then, only the manager can obtain the signer’s
identity as in group signature.Nevertheless, it is difficult to
construct a permission-based signature scheme from a group
signature scheme, since it is not obvious how to generate
unique revealing key for each user. In this way, permission-
based signature is a stronger notion.

Definition 4. A (dynamic) permission-based signature scheme
is a 6-tuple (Init,Gen,Revoke,Sign,Verify,Reveal).

• The initialization algorithm Init() takes as input a secu-
rity parameter, and outputs a public-private key pair.

• The key generation algorithm Gen() takes as input a
private key and a user identity, and outputs a user key
which consists of a signing key and a revealing key.

• The revocation algorithm Revoke() takes as input a
private key and a user identity, and outputs the updated
public-private key pair and user keys for all the unrevoked
users.

• The signing algorithm Sign() takes as input a signing key
and a message, and outputs a signature.

• The signature verification algorithm Verify() takes as
input a public key, a message, and a signature, and
outputs a decision about whether the signature is valid.

• The revealing algorithm Reveal() takes as input a reveal-
ing key and a valid signature, and outputs an identity.

The correctness of permission-based signature is twofold.
Roughly speaking, it means that the honestly generated sig-
nature should always be valid, and the revealing algorithm
should always output the signer identity of a valid signature.
For the sake of simplicity, we use user key rather than signing
key and revealing key in the rest of this paper, which means
every user has both of these two keys.

2) Security Definitions: The security of permission-based
signature consists of anonymity and traceability. Note that the
fundamental security property that any signature scheme needs
to satisfy is unforgeability. In Appendix A, we will show that
the traceability of PBS implies this unforgeability.

The anonymity of PBS is defined by the following game
between a challenger and an adversary.

1) With the security parameter λ, the challenger launches
the initialization algorithm PBS.Init(1λ) to obtain a
public-private key pair (pk, sk), and sends (1λ, pk) to
the adversary.

2) The adversary can query the key generation oracle and
the signing oracle for polynomial times. When id is
submitted to the key generation oracle, the challenger
launches the key generation algorithm PBS.Gen(sk, id)
to obtain a user key ukid, and sends ukid to the
adversary. Then, the challenger would launch the revoca-
tion algorithm PBS.Revoke(sk, id) immediately. When
(id∗,m∗) is submitted to the signing oracle, the chal-
lenger first generates a user key ukid∗ if the user
key does not exist, and launches the signing algorithm
PBS.Sign(ukid∗ ,m

∗) to obtain the signature σ∗. Then
σ∗ is sent to the adversary.

3) The adversary chooses two identities (id0, id1) and a
message m, and sends (id0, id1,m) to the challenger.

4) The challenger first chooses a random bit κ ∈ {0, 1},
and generates a user key ukidκ if it does not exist.
Then, m is signed with the user key ukidκ , and the
signature is sent to the adversary. Further, the challenger
generates certificates for these two identities and sends
the certificates to the adversary.

5) The adversary outputs a bit κ′. We say that the adversary
wins if κ′ = κ.

Definition 5 (Anonymity). A permission-based signature
scheme guarantees the anonymity if for any PPT adversary,
the probability that the adversary wins is negligible greater
than 1/2.

The traceability of PBS is defined by the following game
between a challenger and an adversary.

1) With the security parameter λ, the challenger launches
the initialization algorithm PBS.Init(1λ) to obtain a
public-private key pair (pk, sk), and sends (1λ, pk) to
the adversary. The challenger also initializes an empty
set I .

2) The adversary can query the key generation oracle and
the signing oracle for polynomial times. When id is
submitted to the key generation oracle, the challenger
launches the key generation algorithm PBS.Gen(sk, id)
to obtain a user key ukid, and sends ukid to the
adversary. Then, id is added into I . When (id∗,m∗)
is submitted to the signing oracle, the challenger first
generates a user key ukid∗ if the user key does not exist,
launches the signing algorithm PBS.Sign(ukid∗ ,m

∗)
to obtain the signature σ∗, and then sends σ∗ to the
adversary.

3) The adversary outputs a message-signature pair (m,σ).
We say that the adversary wins if the following three

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

7

conditions hold: 1) m is never submitted to the signing
oracle; 2) (m,σ) is valid; 3) the returned identity via
the revealing algorithm is not in the set I .

Definition 6 (Traceability). A PBS scheme guarantees the
traceability if for any PPT adversary, the probability that the
adversary wins is negligible.

3) Construction: We now detail a concrete construction of
permission-based signature. Let G and GT be two multiplica-
tive cyclic groups of prime order p, and g be a fixed generator
of G. Let HG : {0, 1}∗ → G and HZ : {0, 1}∗ → Z∗p be two
cryptographic hash functions. Our implementation utilizes a
bilinear map e : G × G → GT , which satisfies the following
conditions. 1) Bilinearity: ∀u, v ∈ G, and ∀a, b ∈ Z∗p,
e(ua, vb) = e(u, v)ab. 2) Non-degeneracy: e(g, g) 6= 1GT . 3)
Efficient computation: the operations on group and the bilinear
map are efficiently computable. The six PPT algorithms of
our PBS construction are described below. Note that instead
of directly using the identity, we generate a certificate for
each user, which can be derived from the signing key. This
is because the identity can be arbitrary strings, while the
computation in our construction is for group elements.

The Initialization Algorithm PBS.Init(). With the input
of a security parameter λ, this algorithm generates a public-
private key pair (pk, sk). The detailed procedure is as follows.

1) Choose a group G of prime order p, where p is of λ
bits of length.

2) Choose two random generators g, h ∈ G.
3) Choose three random elements α, β ∈ Z∗p and η ∈ G,

and compute v := hα, w := h−β , and A := e(η, h).
4) Set the public key pk = (g, h, v, w,A) and the private

key sk = (α, β, η).

The Key Generation Algorithm PBS.Gen(). With the
input of a private key sk and a user identity id ∈ {0, 1}∗,
this algorithm produces a user key ukid and a corresponding
certificate certid for that user. The detailed procedure is as
follows.

1) Choose a random element xid ∈ Z∗p, and compute yid :=

g
1

α+xid and zid := ηHG(id)β .
2) Compute Cid := e(yid, v).
3) Set the user key ukid = (xid, yid, zid) and the certificate

certid = Cid.

We call (xid, yid) the signing key and zid the revealing key
since (xid, yid) is only used in the signing algorithm while zid
is only used in the revealing algorithm.

The Revocation Algorithm PBS.Revoke(). With the input
of a private key sk and a user identity id, this algorithm
updates the public-private key pair for the system and user
keys for all the unrevoked users. The detailed procedure is as
follows.

1) Extract (xid, yid) from the user key ukid.
2) Choose two random elements β′′ ∈ Z∗p and η′′ ∈ G, and

compute β′ := β + β′′ and η′ := ηη′′.
3) Set the updated private key sk′ = (α, β′, η′).
4) Compute g′ := g

1
α+xid , w′ := h−β

′
, and A′ := e(η′, h).

5) Set the updated public key pk′ = (g′, h, v, w′, A′).

6) For each unrevoked id∗, compute y′id∗ :=

(yid/yid∗)
1

xid∗−xid , z′′id∗ := η′′HG(id∗)β
′′

, and
C ′id∗ := e(y′id∗ , v).

7) Set the updated user key uk′id∗ = (xid∗ , y
′
id∗ , zid∗z

′′
id∗)

and the updated certificate cert′id∗ = C ′id∗ .
The revocation algorithm could be extended to support

batch revocation, which reduces the times of time-consuming
operations when revoking multiple users.

The Signing Algorithm PBS.Sign(). With the input of a
user key ukid, a certificate certid, and a message m ∈ {0, 1}∗,
this algorithm outputs a signature σ. The detailed procedure
is as follows.

1) Choose two random elements t1, t2 ∈ Z∗p and compute
c1 := yt1id , c2 := ht2 , c3 := wt2 , and c4 := CidA

t2 .
2) Choose six random elements rx, rt1 , rt2 , rζ1 , rζ2 , rξ ∈

Z∗p and compute the following values
r1 := e(c1, h

rζ2 vrt2)e(g, h)−rξ , r2 :=
c
rt1
4 e(c1, h)rxA−rξe(g, h)−rt1 , r3 := hrt2 , r4 := wrt2 ,
r5 := crx2 h

−rζ2 , r6 := crx3 w
−rζ2 , r7 := c

rt1
2 h−rξ , and

r8 := c
rt1
3 w−rξ .

3) Compute the hash value

c := HZ(m, c1, c2, c3, c4, r1, r2, r3, r4, r5, r6, r7, r8).

4) Compute sx := rx + cxid, st1 := rt1 + ct1, st2 :=
rt2 + ct2, sζ1 := rζ1 + cxidt1, sζ2 := rζ2 + cxidt2, and
sξ := rξ + ct1t2.

5) Set σ = (c1, c2, c3, c4, c, sx, st1 , st2 , sζ1 , sζ2 , sξ).
The Signature Verification Algorithm PBS.Verify(). With

the input of a public key pk, a message m, and a signature σ,
this algorithm outputs 1 if the message-signature pair is valid,
and 0 otherwise. The detailed procedure is as follows.

1) Compute the following values r̃1 :=
e(c1, h

sζ2 vst2)e(g, h)−sξ , r̃2 :=
c
st1
4 e(c1, h)sxA−sξe(g, h)−st1 , r̃3 := hst2 c−c2 ,
r̃4 := wst2 c−c3 , r̃5 := csx2 h

−sζ2 , r̃6 := csx3 w
−sζ2 ,

r̃7 := c
sr1
2 h−sξ , and r̃8 := c

sr1
3 w−sξ .

2) Return 1 if HZ(m, c1, c2, c3, c4, r̃1, r̃2, r̃3, r̃4, r̃5, r̃6, r̃7, r̃8)
is equal to c, and 0 otherwise.

The Revealing Algorithm PBS.Reveal(). With the input
of a user key ukid and a valid signature σ, this algorithm
outputs an identity id∗ or ⊥ to declare a failure. The detailed
procedure is as follows.

1) Compute C := c4
e(zid,c2)e(HG(id),c3)

.
2) Output id∗ if certid∗ is equal to C, and ⊥ otherwise.

E. PRAYS

Now, we are ready to present PRAYS, which consists of
seven phases: initialization, registration, revocation, upload-
ing, reading, writing, and auditing.

Initialization Phase. In this phase, the manager, who
decides a security parameter λ, executes as follows.

1) Call the initialization algorithm PBS.Init(1λ) to obtain a
public-private key pair (pk, sk). Publish the public key
pk and keep the private key sk secret.

2) Create two databases as shown in Fig. 4: the certificate
database, which can be delivered to users, and the user

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

8

Identity Certificate
id certid
.

(a) The certificate database

Identity User key
id ukid
.

(b) The user key database

Fig. 4. The databases maintained by the manager.

key database, which is only possessed and accessed by
the manager.

Registration Phase. The registration phase is the only phase
that needs a secure channel between the manager and the user.
The user launches this phase by sending his/her identity id
to the manager. Then, the manager executes as follows with
(pk, sk) after authenticating the user identity.

1) Call the key generation algorithm PBS.Gen(sk, id) to
obtain a user key ukid and a certificate certid.

2) Insert (id, certid) and (id, ukid) into the certificate
database and user key database, respectively.

3) Send (ukid, certid) to the user.
The user stores his/her user key and the correspond-

ing certificate if all the following three equations hold:
1) e(yid, v) = Cid; 2) e(yid, vh

xid) = e(g, h); and 3)
e(zid, h)e(HG(id), w) = A. Otherwise, the user may resubmit
his/her identity id to the manager.

Revocation Phase. Assuming the identity of the revoked
user is id, the manager executes as follows with (pk, sk).

1) Call the revocation algorithm PBS.Revoke(sk, id) to
obtain an updated public-private key pair (pk′, sk′).
Publish the public key pk′ and keep the private key sk′

secret.
2) Update the user keys and the corresponding certificates

of all the unrevoked users in the databases as shown in
Fig. 4.

3) Remove row (id, ukid) from the user key database,
while reserve row (id, certid) in the certificate database
for revealing revision history.

4) Send (xid, yid, z
′′
id∗), which can be obtained from the

revocation algorithm PBS.Revoke(sk, id), to an unre-
voked user whose identity is id∗.

5) Regenerate the state information with the manager’s
private key if the latest state information is generated by
this revoked user (see the uploading and writing phases
for the process of generating the state information)3.

Upon receiving (xid, yid, z
′′
id∗), the unrevoked user whose

identity is id∗ executes as follows.

1) Compute y′id∗ := (yid/yid∗)
1

xid∗−xid , z′id∗ := zid∗z
′′
id∗ ,

and C ′id∗ := e(y′id∗ , v).
2) Examine y′id∗ , z

′
id∗ , and C ′id∗ as shown in the registration

phase. Update its user key uk′id∗ = (xid∗ , y
′
id∗ , z

′
id∗) and

certificate cert′id∗ = C ′id∗ if all equations hold.
Note that the revocation phase requires neither a secure

channel nor online unrevoked users. In practice, the informa-
tion in Step 4 of the revocation phase (i.e., (xid, yid, z

′′
id∗)) can

3The manager’s private key is obtained by performing the registration phase
locally on the manager side.

be published to bulletin boards rather than directly being sent
to unrevoked users.

Uploading Phase. We assume that the file to be uploaded
consists of D data blocks {di}Di=1. To upload this file, the
user, who possesses a user key ukid, executes as follows.

1) Call the tree building algorithm BMT.Build({di}Di=1) to
obtain τ , {gj}Sj=1, and {ui}Di=1.

2) Call the signing algorithm PBS.Sign(ukid,m) to obtain
a signature σ, where m = ν1‖g1‖ . . . ‖gS , i.e., m is the
metadata of the authenticated structure.

3) Set the state information st = (m,σ).
4) Send {di}Di=1 along with τ , {ui}Di=1, and st to CSP4, and

send the state information st to TPA (or to the bulletin
board as explained in Section II).

When CSP and TPA receive st from a user, they can call the
verification algorithm PBS.Verify(pk,m, σ) to check whether
these information is sent from a legal user.

Reading Phase. We assume that the user possesses the
latest state information st which can be downloaded from the
bulletin board. The user simply sends a block index i to CSP,
who then executes as follows.

1) Compute the path from the root to the ith leaf node and
the siblings θ of the path.

2) Send (ιi, di, θ) to the user.
The user, who possesses a user key ukid and state informa-

tion st, then executes as follows.
1) Parse st = (m,σ), where m = ν1‖g1‖ . . . ‖gS .
2) Compute ui :=

∏S
j=1 g

di,j
j .

3) Terminate this process and report a fail-
ure if the proof verification algorithm
BMT.Verify((i, 1), (di, θ, (ιi, ui)), ν1, {gj}Sj=1) returns
0. Otherwise, di is accepted.

4) Call the revealing algorithm PBS.Reveal(ukid, σ) to
obtain the revision history.

Writing Phase. Our scheme supports fully dynamic opera-
tions, including modification, insertion, and deletion. The user,
who possesses a user key ukid, a block index i, a data block
di, and the state information st, executes as follows.

1) Parse st = (m,σ), where m = ν1‖g1‖ . . . ‖gS .
2) Choose op according to the operation, and call the tree

update algorithm BMT.Update to obtain ui and the
updated path. We assume that the updated root is ν′1.

3) Call the signing algorithm PBS.Sign(ukid,m
′) to obtain

a signature σ′, where m′ = ν′1‖g1‖ . . . ‖gS .
4) Send di along with st′ = (m′, σ′), ui, and the updated

path to CSP, and send st′ to TPA (or to the bulletin
board).

Meanwhile, CSP and TPA can verify st′ via the verification
algorithm PBS.Verify(pk,m′, σ′) as in the uploading phase.

Auditing Phase. With the input of the public key pk and
the latest state information st, TPA executes as follows.

1) Choose B random indexes {ib}Bb=1 and B random
elements {nb}Bb=1 where nj ∈ Z∗p.

4Actually, {ui}Di=1 can be computed by CSP, however, that increases the
computation cost of CSP. See the discussion on the proving algorithm in
Section III-C.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

9

2) Send {(ib, nb)}Bb=1 to CSP.
Note that the indexes can be generated from a pseudoran-

dom permutation, and the elements can be generated from a
pseudorandom function. Then, TPA only needs to send B and
two keys (one is used in the pseudorandom permutation, and
the other is used in the pseudorandom function) to CSP.

When receiving {(ib, nb)}Bb=1, CSP executes as follows.
1) Call the proving algorithm BMT.Prove({(ib, nb)}Bb=1,
{di}Di=1, τ, {ui}Di=1) to obtain the proof $.

2) Send $ to TPA.
TPA verifies the response as follows.
1) Terminate and report a failure if the proof verification al-

gorithm BMT.Verify({(ib, nb)}Bb=1, $, ν1, {gj}Sj=1) re-
turns 0.

2) Accept the response and report a success.

IV. SECURITY ANALYSIS

In this section, we examine the security properties of
PRAYS, including integrity, anonymity, and traceability (see
Section I). Secure user revocation is considered in the latter
two properties. Note that, the formal definitions for dynamic
group-oriented provable data possession are almost the same
with the definitions for blockless Merkle tree and permission-
based signature, and we formalize the latter two in Sec-
tion III-C and III-D, respectively. Therefore, we omit the
formal definitions for dynamic group-oriented provable data
possession to avoid redundant definitions, and explain why
the security of BMT and PBS schemes implies the security
of PRAYS. Generally, integrity of PRAYS is guaranteed by
the BMT scheme while anonymity and traceability of PRAYS
are achieved by the PBS scheme. The proofs for anonymity
(Theorem 2) and traceability (Theorem 3) are given in Ap-
pendix A. Roughly speaking, the security (i.e., anonymity and
traceability) of proposed PBS scheme is based on a zero-
knowledge proof protocol (also see Appendix A).

A. Integrity

Integrity means that TPA can reconstruct the challenged data
blocks if CSP passed the checking process [31]. Since TPA
reports a success if and only if the proof verification algorithm
of BMT returns 1, it is obvious that the integrity of PRAYS
can be reduced to the integrity of the BMT scheme once TPA
possesses the latest state information, that is guaranteed by
the unforgeability of the PBS scheme (which is implied by
the traceability of the PBS scheme).

Theorem 1. The proposed BMT scheme guarantees the
integrity if the hash function is collision-resistant and the
discrete logarithm problem is hard in G.

Proof: We first prove that every uib corresponds to the
ibth leaf node and is not tampered and is up-to-date where
1 ≤ b ≤ B if the reconstructed root is equal to ν1. Since the
hash function is collision-resistant, the adversary could not find
two values ν∗2 and ν∗3 such that H(ν∗2‖ν∗3) = s1; otherwise, a
collision is found immediately. Likewise, the adversary cannot
tamper ν4, ν5, . . . , which implies that the siblings θ and

{(ιib , uib)}Bb=1 (i.e., the last two parts of the proof $) can
only be generated from the latest tree τ . Since (ι, lι) in νι can
be used to determine the structure of the tree, the adversary
cannot send wrong positions either.

Then, we prove that the challenger can reconstruct chal-
lenged blocks if

∏S
j=1 g

µj
j =

∏B
b=1 u

nb
ib

(i.e., pass the second
step of the proof verification algorithm). Note that the right
side of the equation is a constant from the perspective of
the challenger since every uib corresponds to the ibth leaf
node and ni is generated by the challenger. Since the discrete
logarithm problem is hard in G, the adversary cannot output
{µ∗1, . . . , µ∗S} that satisfies the following two conditions: 1)
exists µ∗j 6= µj for some j; 2)

∏S
j=1 g

µ∗j
j =

∏B
i=1 u

ni
i .

Therefore, every µj is a linear combination of challenged
segments {dib,j}Bb=1. Then, the challenger could generate other
challenges with the same indexes {ib}Bb=1 but different coeffi-
cients {nb}Bb=1 for B times, and reconstruct the challenged
blocks by solving a system of linear equations. Thus, the
proposed BMT scheme guarantees integrity.

B. Anonymity

Anonymity means that the entities outside of a group,
including CSP, TPA, and revoked users, cannot learn the
signer’s identity. That is, PRAYS guarantees anonymity if the
proposed PBS scheme provides anonymity.

Theorem 2. The proposed PBS scheme guarantees the
anonymity under the random oracle model if the Computa-
tional Diffie-Hellman (CDH) problem is hard in G, and the
Decisional Bilinear Diffie-Hellman (DBDH) problem is hard.

C. Traceability

Traceability means that the users within the same group
can learn the signer’s identity in the reading phase, while the
entities outside of the group, including CSP, TPA, and the
revoked users, cannot forge or tamper the signature. That is,
PRAYS guarantees traceability if the proposed PBS scheme
provides traceability.

Theorem 3. The proposed PBS scheme guarantees the trace-
ability under the random oracle model if the Strong Diffie-
Hellman (SDH) problem is hard in G.

V. PERFORMANCE EVALUATION

In this section, we first theoretically analyze the perfor-
mance of PRAYS. Then, we examine PRAYS through exten-
sive experiments.

A. Theoretical Analysis

The theoretical analysis focuses on the storage cost and
the revocation cost. In the analysis, N denotes the number
of users; D denotes the number of data blocks; U denotes the
number of unrevoked users; and R denotes the number of data
blocks signed by the revoked user.

We first analyze the storage cost of PRAYS which is O(N)
on the user side, O(1) on the TPA side, and O(D) on the
CSP side, respectively. Although both the user key and the

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

10

TABLE II
STORAGE COST COMPARISON

User TPA CSP
PRAYS O(N) O(1) O(D)

Oruta [12] O(N) O(N +D) O(D)
Panda [11] O(N) O(N +D) O(D)
YY [10] O(N) O(N +D) O(D)

JCM [14] O(D) O(D) O(D)

public key in PRAYS are O(1), the user needs to possess the
certificate database to obtain the revision history, which makes
the storage cost of PRAYS on the user side be O(N)5. TPA
maintains auditing metadata which consists of the public key
and the state information. CSP stores users’ data and extra
information used for integrity checking, and both of them are
O(D) in PRAYS. Table II shows the storage cost of PRAYS
compared with other schemes6. From Table II, PRAYS is the
only scheme that achieves constant auditing metadata.

Then, we analyze the cost in the revocation phase. When
a user is revoked, both the computation cost and the commu-
nication cost of PRAYS are O(1) on the unrevoked user side
and O(U) on the manager side, respectively. That is because
the manager needs to compute and publish z′′id∗ for every
unrevoked user while each unrevoked user only receives and
updates its own user key. Table III shows the computation
cost and communication cost of PRAYS compared with other
schemes. Since U is much smaller than D and R in practice,
we believe that PRAYS in the revocation phase is more
efficient than most of the existing schemes.

B. Experiments and Analysis

We implemented PRAYS and related schemes by the PBC
library 0.5.14. CSP and TPA are desktops running Ubuntu
16.04 with an Intel 2.6GHz CPU and 8GB memory. Users
and the manager are laptops running Ubuntu 14.04 with an
Intel 2.5GHz CPU and 4GB memory. In all implementations,
we fixed the security parameter to 160 bits and the block
size to 4kB as in [10]. The experiments focused on four
phases: initialization, registration, uploading, and auditing. The
reading and writing phases are similar to the auditing and
uploading phases, respectively, except for that there is only
one block involved. The revocation phase has been analyzed in
Section V-A. Therefore, we did not consider these phases. The
files of specified sizes used in our experiments are randomly
generated by a Python script. All experimental results are the
average of 10 trials.

We first examine the size of the public key generated in the
initialization phase, which is later delivered to users and TPA.
Note that the scheme in JCM needs to determine D in advance.
Therefore, we first consider that there is only one block, and
Fig. 5(a) shows the result in this case. The size of the public

5This storage cost can be reduced to O(1) via the encryption scheme in [32]
and any digital signature scheme. However, we do not consider this extension
for simplicity.

6Some schemes do not indicate that whether users should possess the public
key. We think that users need to verify the tags when they read a data block
from the cloud as shown in Section III-E. Therefore, the storage cost on the
user sider considers the public key in all the schemes.

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

15 30 45 60 75 90 105 120 135 150

S
to

ra
g
e

co
st

 (
b
y
te

s)

Number of users

PRAYS YY JCM Panda Oruta

(a) Storage cost vs. N

1.E+0

1.E+2

1.E+4

1.E+6

1.E+8

1 2 3 4 5 6 7 8 9 10

S
to

ra
g
e

co
st

 (
b
y
te

s)

Number of blocks

PRAYS YY JCM Panda Oruta

(b) Storage cost vs. D

Fig. 5. Storage cost for the public key.

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

15 30 45 60 75 90 105 120 135 150

C
o

m
p

u
ta

ti
o

n
 c

o
st

 (
m

s)

Number of users

PRAYS YY JCM Panda Oruta

(a) Computation cost vs. N

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1 2 3 4 5 6 7 8 9 10

C
o
m

p
u
ta

ti
o
n
 c

o
st

 (
m

s)

Number of blocks

PRAYS YY JCM Panda Oruta

(b) Computation cost vs. D

Fig. 6. Computation cost for key generation.

1.E+0

1.E+2

1.E+4

1.E+6

1.E+8

C
o

m
p

u
ta

ti
o

n
 c

o
st

 (
m

s)

Data size

PRAYS YY JCM Panda Oruta

Fig. 7. Computation cost in the upload phase.

key is independent with N in PRAYS and JCM, while the size
grows with N increasing in other schemes. Fig. 5(b) presents
the relationship between the size of the public key and D
when N = 15. The size grows as D is raised in JCM, while
the size is independent with D in other schemes. Therefore,
among the five examined schemes, PRAYS is the only scheme
whose public key size is independent with N and D.

Then, we examine the computation cost in the initialization
and registration phases, under which the system generates a
public key and all user keys. Fig. 6(a) shows the results when
D = 1. The computation cost increases with N raised for all
the five schemes, since the system needs to generate a private
key for each user. Then, we fix N = 15, and investigate the
computation cost with different D as shown in Fig. 6(b). The
computation cost for all schemes except JCM is independent
with D. Since the computation cost in JCM grows as D rising
and is 96 seconds when there are 2 blocks (i.e., the file is only
8kB), it is not suitable for large files. As a result, PRAYS is
as efficient as YY, Panda, and Oruta for key generation.

In the uploading phase, we investigate both the computation
and the communication cost on the user side. Fig. 7 presents
the computation cost, under which PRAYS, YY, and JCM have
almost the same performance. That is because the uploader
needs to execute one exponentiation for each element in
Zp. Panda and Oruta are less efficient than the other three
schemes in this phase since they need more exponentiations
for each element in Zp. The uploading phase is the most time-
consuming phase for all these five schemes.

The communication cost in the uploading phase consists of

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

11

TABLE III
REVOCATION COST COMPARISON

Unrevoked User Manager CSP
Computation Communication Computation Communication Computation Communication

PRAYS O(1) O(1) O(U) O(U) N/A O(1)
Oruta [12] O(D) O(D) N/A N/A N/A O(D)
Panda [11] O(1) O(1) N/A N/A O(R) O(1)
YY [10] N/A N/A N/A O(1) O(R) O(1)

JCM [14] O(1) O(1) O(1) O(1) N/A O(1)

1.E+0
1.E+1
1.E+2
1.E+3
1.E+4
1.E+5
1.E+6
1.E+7

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

b
y
te

s)

Data size

PRAYS YY JCM Panda Oruta

(a) Extra storage on the cloud

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6
C

o
m

m
u

n
ic

at
io

n
 c

o
st

 (
b
y
te

s)

Data size

PRAYS YY JCM Panda Oruta

(b) State information

Fig. 8. Communication cost in the upload phase.

three parts: data size, the size of the authenticated structure,
and the size of the state information. In our experiments, we
omit the communication cost for transmitting the data to the
cloud since this cost is the same for all schemes, and focus
on the other two parts (which have been theoretical analyzed
in Table II). Fig. 8(a) shows the size of the authenticated
structure with respect to the data size when N = 15, which
needs to be stored at CSP. In PRAYS, CSP needs to store the
entire tree τ and {ui}Di=1. Therefore, the communication cost
of PRAYS grows with D raised. The communication cost of
Panda grows with D and N raising, since for each data block,
the signer has to generate a ring signature whose size grows
linearly with N . Thus, Panda is not suitable for large groups.
YY and JCM are efficient in terms of communication cost in
this phase, however, they do not support insertion operation at
all. Fig. 8(b) presents the size of the state information, which
needs to be stored at TPA (or the bulletin boards). The cost is
constant for PRAYS while the cost grows linearly as D rises
in other schemes. As a result, PRAYS and YY have their own
advantages in this phase while other schemes are inefficient
in practice.

In the auditing phase, we examine the computation costs
at CSP and TPA, respectively, and the communication cost
between CSP and TPA. As in other schemes, we fix B = 460,
which has been proved that it is sufficient for auditing [4].
Fig. 9(a) shows the computation cost on CSP7. When the data
size is less than 1.8MB, D is less than 460 in all schemes, and
TPA challenges all the data blocks in this case. Therefore, the
computation cost grows with D for all schemes. When D >
460, the computation cost grows with D for PRAYS, which
is caused by computing siblings, while the cost is constant
in other schemes8. Fig. 9(b) presents the computation cost on
TPA, in which the result is similar to Fig. 9(a). Note that the
growth rate of PRAYS in Figure 9 is extremely slow when the

7In JCM, CSP simply reads 460 blocks and sends them to TPA without
any computation, and therefore the computation cost is omitted.

8The computation cost in YY grows with the number of users who generate
the challenged blocks increasing. However, we fix this number to 1.

1

10

100

1000

10000

100000

C
o
m

p
u
ta

ti
o
n
 c

o
st

 (
m

s)

Data size

PRAYS YY Panda Oruta

(a) Cost on CSP

0
100
200
300
400
500
600
700

C
o
m

p
u
ta

ti
o

n
 c

o
st

 (
m

s)

Data size

PRAYS YY JCM Panda Oruta

(b) Cost on TPA

Fig. 9. Computation cost in the auditing phase.

0
10000
20000
30000
40000
50000
60000
70000

C
o

m
m

u
n

ic
at

io
n

 c
o

st
 (

b
y
te

s)

Data size

PRAYS YY JCM Panda Oruta

Fig. 10. Communication cost in the auditing phase.

file is larger than 4MB. That is because the time-consuming
operations are constant when the number of challenged blocks
stops increasing.

Fig. 10 shows the communication cost between CSP and
TPA. The communication cost grows slowly with D for
PRAYS, while the cost is constant in other schemes when
the data size is larger than 1.8MB. This communication cost
is acceptable since PRAYS is the only solution that supports
fully dynamic operations.

VI. RELATED WORK

Single-Writer Solutions. Integrity checking in the cloud
was first explored under the single-writer model for personal
data management. Juels and Kaliski introduced the concept
of Proof of Retrievability (PoR) and proposed a concrete
construction [5]. Unfortunately, their scheme only allows lim-
ited times of integrity checking. Ateniese et al. independently
introduced a similar concept, called Provable Data Possession
(PDP) [4]. Their scheme allows unlimited times of integrity
checking, and supports public auditing, which means anyone
can check the data integrity. This property is highly preferred
since users can delegate the checking capability to third-party
verifiers for alleviating the computation burden. Nevertheless,
their scheme does not support dynamic operations.

Subsequent works devoted to integrity checking schemes
for dynamic data [15], [16], [24], [30], [33]–[35]. In public
auditing, in addition to the public key, the verifiers usually
maintain some information about the current status of the
audited data, called state information. The state information

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

12

is crucial to dynamic cloud storage and leverages which the
verifier determines whether the stored data on the cloud is up-
to-date. However, applying those schemes to the multi-writer
model would raise performance concern in the revocation
process.

Multi-Writer Solutions. Researchers then focus on in-
tegrity checking schemes under the multi-writer model which
supports data sharing among a group of users [25].Wang et al.
introduced the concept of group-oriented proofs of storage, but
did not consider any dynamic data operations [13].

Wang et al. proposed a public auditing scheme, called Oruta,
which guarantees identity privacy [12]. However, Oruta does
not support non-trivial user revocation due to the inherent
property of the ring signature. To support user revocation,
Wang et al. proposed another solution, called Panda [9], [11].
Nevertheless, Panda could not resist the collusion between the
cloud and the revoked user.

Yuan and Yu proposed a public integrity checking scheme
for data sharing, which supports secure user revocation [10].
Unfortunately, their scheme does not satisfy the security
definition for integrity checking in the cloud [31] as opposed
to previous schemes. That is, no one can extract the challenged
blocks during the checking process in their scheme.

Jiang et al. proposed a public integrity auditing scheme
for shared data based on group signature and vector com-
mitment [14]. Their solution supports secure user revocation
and guarantees identity privacy. However, it cannot reveal
revision history to users, since with group signature, even
group members could not identify who has updated the shared
data. Furthermore, their solution requires that the data size
has to be fixed and determined at the beginning of system
initialization, which makes their solution less flexible.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a privacy-preserving auditing
scheme for dynamic shared data, named PRAYS. It is the first
group-oriented provable data possession scheme that supports
fully dynamic operations as well as constant auditing metadata
to our knowledge. The proposed scheme is boosted by a
new two-step paradigm designed for group-oriented integrity
checking. In order to realize this paradigm, we presented
a blockless Merkle tree for the first step, and presented a
permission-based signature for the second step. With these two
tools, PRAYS provides all the essential features in the multi-
writer storage services, including fully dynamic operations,
constant auditing metadata, secure user revocation, anonymity,
and traceability.

In our future work, we will extend PRAYS from the
following aspects. 1) Reducing the storage cost on the user
side to O(1) as mentioned in Section V-A. 2) Optimizing the
computation cost in the revocation phase. Unlike the traditional
paradigm whose lower bound of the computation cost in the
revocation phase is O(R), it is possible to improve PRAYS
by enhancing PBS.

ACKNOWLEDGMENT

This research was supported in part by the National Nat-
ural Science Foundation of China under grants 61702379,

61772383, U1836202, 61572380; by the China Postdoctoral
Science Foundation under grant No. 2018M630877; by Sci-
ence, Technology and Innovation Commission of Shenzhen
Municipality under grant No. JCYJ20170303170108208. The
corresponding author is Jing Chen.

REFERENCES

[1] H. Wang, D. He, and S. Tang, “Identity-Based Proxy-Oriented Data
Uploading and Remote Data Integrity Checking in Public Cloud,” IEEE
Transactions on Information Forensics and Security, vol. 11, no. 6, pp.
1165–1176, 2016.

[2] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y. Dai, and
G. Min, “Identity-Based Remote Data Integrity Checking With Perfect
Data Privacy Preserving for Cloud Storage,” IEEE Transactions on
Information Forensics and Security, vol. 12, no. 4, pp. 767–778, 2017.

[3] Z. Ren, L. Wang, Q. Wang, and M. Xu, “Dynamic Proofs of Retrievabil-
ity for Coded Cloud Storage Systems,” IEEE Transactions on Services
Computing, vol. 11, no. 4, pp. 685–698, 2018.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable Data Possession at Untrusted Stores,” in Proc.
of CCS, 2007.

[5] A. Juels and B. S. Kaliski, Jr., “PORs: Proofs of Retrievability for Large
Files,” in Proc. of CCS, 2007.

[6] G. Ateniese, S. Kamara, and J. Katz, “Proofs of Storage from Homo-
morphic Identification Protocols,” in Proc. of ASIACRYPT, 2009.

[7] H. Wang, “Identity-based distributed provable data possession in multi-
cloud storage,” IEEE Transactions on Services Computing, vol. 8, no. 2,
pp. 328–340, 2015.

[8] S. Guarino, E. S. Canlar, M. Conti, R. D. Pietro, and A. Solanas, “Prov-
able storage medium for data storage outsourcing,” IEEE Transactions
on Services Computing, vol. 8, no. 6, pp. 985–997, 2015.

[9] B. Wang, B. Li, and H. Li, “Public Auditing for Shared Data with
Efficient User Revocation in the Cloud,” in Proc. of INFOCOM, 2013.

[10] J. Yuan and S. Yu, “Efficient Public Integrity Checking for Cloud Data
Sharing with Multi-User Modification,” in Proc. of INFOCOM, 2014.

[11] B. Wang, B. Li, and H. Li, “Panda: Public Auditing for Shared Data
with Efficient User Revocation in the Cloud,” IEEE Transactions on
Services Computing, vol. 8, no. 1, pp. 92–106, 2015.

[12] ——, “Oruta: Privacy-Preserving Public Auditing for Shared Data in
the Cloud,” IEEE Transactions on Cloud Computing, vol. 2, no. 1, pp.
43–56, 2014.

[13] Y. Wang, Q. Wu, B. Qin, X. Chen, X. Huang, and Y. Zhou, “Group-
oriented proofs of storage,” in Proceedings of ASIACCS, 2015.

[14] T. Jiang, X. Chen, and J. Ma, “Public Integrity Auditing for Shared
Dynamic Cloud Data with Group User Revocation,” IEEE Transactions
on Computers, vol. 65, no. 8, pp. 2363–2373, 2016.

[15] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” ACM Trans. Inf. Syst. Secur., vol. 17, no. 4,
pp. 15:1–15:29, 2015.

[16] E. Shi, E. Stefanov, and C. Papamanthou, “Practical Dynamic Proofs of
Retrievability,” in Proc. of CCS, 2013.

[17] C. Garman, M. Green, and I. Miers, “Decentralized Anonymous Cre-
dentials,” in Proceedings of NDSS, 2014.

[18] J. Chen, S. Yao, Q. Yuan, K. He, S. Ji, and R. Du, “CertChain: Public
and efficient certificate audit based on blockchain for tls connections,”
in Proc. of INFOCOM, 2018.

[19] S. Yao, J. Chen, K. He, R. Du, T. Zhu, and X. Chen, “PBCert: Privacy-
preserving blockchain-based certificate status validation toward mass
storage management,” IEEE Access, vol. 7, pp. 6117–6128, 2019.

[20] M. Maffei, G. Malavolta, M. Reinert, and D. Schroder, “Privacy and
Access Control for Outsourced Personal Records,” in Proc. of S&P,
2015.

[21] J. Chen, K. He, Q. Yuan, M. Chen, R. Du, and Y. Xiang, “Blind filtering
at third parties: An efficient privacy-preserving framework for location-
based services,” IEEE Transactions on Mobile Computing, vol. 17,
no. 11, pp. 2524–2535, 2018.

[22] N. Unger, S. Dechand, J. Bonneau, S. Fahl, H. Perl, I. Goldberg, and
M. Smith, “SoK: Secure Messaging,” in Proc. of S&P, 2015.

[23] H. Corrigan-Gibbs, D. Boneh, and D. Mazieres, “Riposte: An Anony-
mous Messaging System Handling Millions of Users,” in Proc. of S&P,
2015.

[24] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling Public Au-
ditability and Data Dynamics for Storage Security in Cloud Computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 5,
pp. 847–859, 2011.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

13

[25] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A Scalable
Cloud File System with Efficient Integrity Checks,” in Proceedings of
the 28th Annual Computer Security Applications Conference, 2012.

[26] D. Catalano, “Homomorphic Signatures and Message Authentication
Codes,” in Proc. of SCN, 2014.

[27] M. F. Ezerman, H. T. Lee, S. Ling, K. Nguyen, and H. Wang, “A Prov-
ably Secure Group Signature Scheme from Code-Based Assumptions,”
in Proc. of ASIACRYPT, 2015.

[28] B. Libert, S. Ling, K. Nguyen, and H. Wang, “Zero-Knowledge Ar-
guments for Lattice-Based Accumulators: Logarithmic-Size Ring Sig-
natures and Group Signatures Without Trapdoors,” in Proc. of EURO-
CRYPT, 2016.

[29] A. Oprea and M. K. Reiter, “Integrity Checking in Cryptographic File
Systems with Constant Trusted Storage,” in Proc. of USENIX Security,
2007.

[30] C. Erway, A. Küpcü, C. Papamanthou, and R. Tamassia, “Dynamic
Provable Data Possession,” in Proc. of CCS, 2009.

[31] H. Shacham and B. Waters, “Compact Proofs of Retrievability,” Journal
of Cryptology, vol. 26, no. 3, pp. 442–483, 2013.

[32] Q. Wu, Y. Mu, W. Susilo, B. Qin, and J. Domingo-Ferrer, “Asymmetric
Group Key Agreement,” in Proc. of EUROCRYPT, 2009.

[33] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and
efficient provable data possession,” in Proc. of SecureComm, 2008.

[34] D. Cash, A. Küpçü, and D. Wichs, “Dynamic Proofs of Retrievability
via Oblivious RAM,” in Proc. of EUROCRYPT, 2013.

[35] K. He, J. Chen, R. Du, Q. Wu, G. Xue, and X. Zhang, “DeyPoS:
deduplicatable dynamic proof of storage for multi-user environments,”
IEEE Transactions on Computers, vol. 65, no. 12, pp. 3631–3645, 2016.

[36] A. Fiat and A. Shamir, “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems,” in Proceedings of CRYPTO,
1986.

APPENDIX
SECURITY PROOFS FOR THE PBS SCHEME

In this section, we prove the security of the proposed PBS
scheme. To prove the security, i.e., Theorem 2 and Theorem 3,
we first show how the proposed scheme can be converted from
a zero-knowledge proof protocol.

Let G and GT be two multiplicative cyclic groups of prime
order p, and e : G×G→ GT be a bilinear map. The system
chooses two random generates g, h ∈ G, and three random
elements α, β ∈ Z∗p and η ∈ G. Then, the public parameter is
(g, h, v := hα, w := h−β , A := e(η, h)). The proposed zero-
knowledge proof protocol for an instance of the SDH problem
consists of four stage: commit, challenge, response, and verify.

Commit stage. A prover possesses a pair of solution
(x, y := g

1
α+x) for a certain SDH problem, where x ∈ Z∗p,

y ∈ G, and the equation e(y, vhx) = e(g, h) holds. In order to
prove the possession of such a solution, the prover chooses two
random values t1, t2 ∈ Z∗p, and computes c1 := yt1 , c2 := ht2 ,
c3 := wt2 , c4 := e(y, v)At2 . It also computes three auxiliary
values ζ1 := xt1, ζ2 := xt2, and ξ := t1t2. Then, it must prove
to the verifier that it possesses the six-tuple (x, t1, t2, ζ1, ζ2, ξ)
which satisfies the following eight relations:

e(c1, h
ζ2vt2)e(g, h)−ξ = 1, ct14 e(c1, h)xA−ξe(g, h)−t1 = 1,

ht2 = c2, wt2 = c3,

cx2h
−ζ2 = 1, cx3w

−ζ2 = 1,

ct12 h
−ξ = 1, ct13 w

−ξ = 1.

Therefore, it chooses six random blinding
values rx, rt1 , rt2 , rζ1 , rζ2 , and rξ from Z∗p,
and computes r1 := e(c1, h

rζ2 vrt2)e(g, h)−rξ ,
r2 := c

rt1
4 e(c1, h)rxA−rξe(g, h)−rt1 , r3 := hrt2 ,

r4 := wrt2 , r5 := crx2 h
−rζ2 , r6 := crx3 w

−rζ2 ,

r7 := c
rt1
2 h−rξ , and r8 := c

rt1
3 w−rξ . The 12-tuple

(c1, c2, c3, c4, r1, r2, r3, r4, r5, r6, r7, r8) is sent to the verifier.
Challenge stage. After receiving from the prover the

12-tuple (c1, c2, c3, c4, r1, r2, r3, r4, r5, r6, r7, r8), the verifier
chooses a random value c← Z∗p, and sends c to the prover.

Response stage. When receiving the challenge c, the prover
computes sx := rx + cxid, st1 := rt1 + ct1, st2 := rt2 + ct2,
sζ1 := rζ1 + cxidt1, sζ2 := rζ2 + cxidt2, and sξ := rξ + ct1t2.
Then, (sx, st1 , st2 , sζ1 , sζ2 , sξ) is sent to the verifier.

Verify stage. Finally, the verifier accepts the proof only if
all the following equations hold.

e(c1, h
sζ2 vst2)e(g, h)−sξ

?
= r1,

c
st1
4 e(c1, h)sxA−sξe(g, h)−st1

?
= r2,

hst2 c−c2
?
= r3, w

st2 c−c3
?
= r4, c

sx
2 h
−sζ2 ?

= r5,

csx3 w
−sζ2 ?

= r6, c
sr1
2 h−sξ

?
= r7, c

sr1
3 w−sξ

?
= r8.

Lemma 1. The protocol is complete.

This lemma can be proved via verifying the equations in
the verify stage, therefore, we omit the proof here.

Lemma 2. The transcripts of the protocol can be simulated.

Proof: The system selects three random values t1, t2 ←
Z∗p and y ← G, and sets c1 := yt1 , c2 := ht2 , c3 := wt2 ,
c4 := e(y, v)At2 . The distribution of the 4-tuple (c1, c2, c3, c4)
is identical with any prover.

The 4-tuple (c1, c2, c3, c4) is then given to the simulator,
and the simulator picks a random value c ← Z∗p. Then, after
selecting six random value sx, st1 , st2 , sζ1 , sζ2 , and sξ in
Z∗p, the simulator computes r1 := e(c1, h

sζ2 vst2)e(g, h)−sξ ,
r2 := c

st1
4 e(c1, h)sxA−sξe(g, h)−st1 , r3 := hst2 c−c2 ,

r4 := wst2 c−c3 , r5 := csx2 h
−sζ2 , r6 := csx3 w

−sζ2 ,
r7 := c

sr1
2 h−sξ , and r8 := c

sr1
3 w−sξ . Obviously,

the distributions of generated (sx, st1 , st2 , sζ1 , sζ2 , sξ)
and (r1, r2, r3, r4, r5, r6, r7, r8) are identical to the
output of the prover. Finally, the simulator outputs
(c1, c2, c3, c4, r1, r2, r3, r4, r5, r6, r7, r8, c, sx, st1 , st2 , sζ1 , sζ2 , sξ),
whose distribution is identical to the transcripts of the protocol.
That is, the transcripts of the protocol can be simulated.

Lemma 3. There is an extractor for the protocol.

Proof: We assume that an extractor can rewind the
protocol, and submit two different values c and c′ to the
prover. Since the prover answers c and c′ with the same
(t1, t2, rx, rt1 , rt2 , rζ1 , rζ2 , rξ), the extractor can obtain two
transcripts (c1, c2, c3, c4, r1, r2, r3, r4, r5,
r6, r7, r8, c, sx, st1 , st2 , sζ1 , sζ2 , sξ) and
(c1, c2, c3, c4, r1, r2, r3, r4, r5, r6,
r7, r8, c

′, s′x, s
′
t1 , s

′
t2 , s

′
ζ1
, s′ζ2 , s

′
ξ). Let ∆c := c − c′,

∆sx := sx − s′x, ∆st1 := st1 − s′t1 , ∆st2 := st2 − s′t2 ,
∆sζ1 := sζ1 − s′ζ1 , ∆sζ2 := sζ2 − s′ζ2 , and , ∆sξ := sξ − s′ξ.
Finally, the extractor outputs

t̃1 :=
∆st1
∆c

, t̃2 :=
∆st2
∆c

, x̃ :=
∆sx
∆c

, and ỹ := c
1/t̃1
1 .

Since e(ỹ, vhx̃) = e(g, h), (x̃, ỹ) is a solution of SDH
problem, which proves this lemma.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2019.2925800, IEEE
Transactions on Dependable and Secure Computing

14

Theorem 4. The protocol proposed in this section is an
honest-verifier zero-knowledge proof of knowledge of an SDH
pair.

This theorem can be directly obtained from Lemma 1,
Lemma 2, and Lemma 3.

Let HZ : {0, 1}∗ → Z∗p be a collision-resistant hash
function, and m ∈ {0, 1}∗ be a message. Then, we can obtain
a secure signature scheme in the random oracle model via the
Fiat-Shamir heuristic [36] from the proposed protocol. The
signing algorithm and verification algorithm of the signature
scheme are exactly the same with those in the proposed PBS
scheme in Section III-D. Now, we are able to prove Theorem 2.
That is, the proposed PBS scheme guarantees the anonymity
under the random oracle model if the CDH problem is hard
in G, and the DBDH problem is hard.

Proof: Since the proposed signature scheme is con-
verted from a zero-knowledge proof protocol via the
Fiat-Shamir heuristic under the random oracle model,
(c, sx, st1 , st2 , sζ1 , sζ2 , sξ) does not contain any information.
Therefore, we focus on (c1, c2, c3, c4) in σ.

Recall that c1 := yt1idκ , c2 := ht2 , c3 := wt2 , and
c4 := CidκA

t2 , where yidκ is part of the user key ukidκ and
Cidκ = e(yidκ , v) is the corresponding certificate. From [32],
the probability that the adversary distinguishes (c2, c3, c4)
from (c2, c3, Z) is negligible greater than 1/2 if the CDH
problem is hard in G and the DBDH problem is hard, where Z
is a random element in GT . Therefore, for each signing oracle
query, we can choose a random y ∈ G and two random number
t1, t2 ∈ Z∗p, and compute (yt1 , ht2 , wt2 , e(y, v)At2) which is
indistinguishable from the truly (c1, c2, c3, c4) generated from
yidκ . Thus, the probability that the adversary wins is negligible
greater than 1/2, which implies that the proposed PBS scheme
guarantees anonymity.

Then, we prove Theorem 3. That is, the proposed PBS
scheme guarantees the traceability under the random oracle
model if the Strong Diffie-Hellman (SDH) problem is hard
in G. Note that traceability implies unforgeability which is
the basic requirement for any digital signature scheme. To
implement the traditional unforgeability, we only need to
disable the capability of querying the key generation oracle
in Definition 6.

Proof: The strong Diffie-Hellman problem is that with
the input of (g, h, hα, . . . , hα

q

) ∈ Gq+2, any PPT algorithm
could not output (x∗, g1/(α+x

∗)) except for a negligible prob-
ability, where q is a system parameter, and x∗ is selected
by the algorithm. We prove that we can extract a pair of
(x∗, g1/(α+x

∗)) from the signature σ∗, i.e., solve the SDH
problem, if we view the hash function HZ as a random oracle.
This process is trivial from Lemma 3, in which the extractor
can compute (x∗, g1/(α+x

∗)) by rewinding the zero-knowledge
proof protocol. Since the SDH problem is hard, which means
that the adversary cannot output a valid message-signature pair
(m∗, σ∗) with unattained SDH pair (i.e., with unrevoked user
key) except for negligible probability. Thus, the proposed PBS
scheme guarantees traceability.

Kun He is a postdoctor of Wuhan University. He
received a Ph.D. in computer science from the
computer school, Wuhan University. His research
interests include cryptography, network security, mo-
bile computing, and cloud computing.

Jing Chen received the Ph.D. degree in computer
science from Huazhong University of Science and
Technology, Wuhan. He worked as an associate pro-
fessor from 2010. His research interests in computer
science are in the areas of network security, cloud
security. He is the Chief Investigator of several
projects in network and system security, funded by
the National Natural Science Foundation of China
(NSFC). He has published more than 60 research
papers in many international journals and confer-
ences, such as IEEE Transactions on Parallel and

Distributed System, International Journal of Parallel and Distributed System,
INFOCOM, SECON, TrustCom, NSS. He acts as a reviewer for many Journals
and conferences, such as IEEE Transactions on Wireless Communication,
IEEE Transactions on Industrial Informatics, Computer Communications, and
GLOBCOM.

Quan Yuan is an assistant professor in the De-
partment of Math and Computer Science at the
University of Texas-Permian Basin, TX, USA. His
research interests include mobile computing, rout-
ing protocols, peer-to-peer computing, parallel and
distributed systems, and computer networks. He has
published more than 30 research papers in many
international journals and conferences, such as IEEE
Transactions on Parallel and Distributed Systems,
INFOCOM, MobiHoc, SECON, and TrustCom.

Shouling Ji is a ZJU 100-Young Professor in the
College of Computer Science and Technology at
Zhejiang University and a Research Faculty in the
School of Electrical and Computer Engineering at
Georgia Institute of Technology. He received a Ph.D.
in Electrical and Computer Engineering from Geor-
gia Institute of Technology and a Ph.D. in Computer
Science from Georgia State University. His current
research interests include Big Data Security and
Privacy, Big Data Driven Security and Privacy, and
Adversarial Learning. He is a member of IEEE and

ACM and was the Membership Chair of the IEEE Student Branch at Georgia
State (2012-2013).

Debiao He received the PhD degree in applied
mathematics from the School of Mathematics and
Statistics, Wuhan University, in 2009. He is currently
a professor in School of Cyber Science and Engi-
neering, Wuhan University. His main research inter-
ests include cryptography and information security,
in particular, and cryptographic protocols.

Ruiying Du received the BS, MS, PH.D degrees
in computer science in 1987, 1994 and 2008, from
Wuhan University, Wuhan, China. She is a professor
at School of Cyber Science and Engineering, Wuhan
University. Her research interests include network
security, wireless network, cloud computing and
mobile computing. She has published more than 80
research papers in many international journals and
conferences, such as IEEE Transactions on Parallel
and Distributed System, International Journal of Par-
allel and Distributed System, INFOCOM, SECON,

TrustCom, NSS.

